
D02 – Ordinary Differential Equations

D02QGF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02QGF is a reverse communication routine for integrating a non-stiff system of first-order ordinary
differential equations using a variable-order variable-step Adams method. A root-finding facility is
provided.

2 Specification

SUBROUTINE D02QGF(NEQF, T, Y, TOUT, NEQG, ROOT, IREVCM, TRVCM,
1 YRVCM, YPRVCM, GRVCM, KGRVCM, RWORK, LRWORK,
2 IWORK, LIWORK, IFAIL)
INTEGER NEQF, NEQG, IREVCM, YRVCM, YPRVCM, KGRVCM,
1 LRWORK, IWORK(LIWORK), LIWORK, IFAIL
real T, Y(NEQF), TOUT, TRVCM, GRVCM, RWORK(LRWORK)
LOGICAL ROOT

3 Description

Given the initial values x, y1, y2, . . . , yNEQF the routine integrates a non-stiff system of first-order
differential equations of the type, y′

i = fi(x, y1, y2, . . . , yNEQF), for i = 1, 2, . . . , NEQF, from x = T to
x = TOUT using a variable-order variable-step Adams method. The user defines the system by reverse
communication, evaluating fi in terms of x and y1, y2, . . . , yNEQF, and y1, y2, . . . , yNEQF are supplied at
x = T by D02QGF. The routine is capable of finding roots (values of x) of prescribed event functions of
the form

gj(x, y, y′) = 0, j = 1, 2, . . . , NEQG.

Each gj is considered to be independent of the others so that roots are sought of each gj individually. The
root reported by the routine will be the first root encountered by any gj . Two techniques for determining
the presence of a root in an integration step are available: the sophisticated method described in Watts
[3] and a simplified method whereby sign changes in each gj are looked for at the ends of each integration
step. The user also defines each gj by reverse communication. In one-step mode the routine returns an
approximation to the solution at each integration point. In interval mode this value is returned at the
end of the integration range. If a root is detected this approximation is given at the root. The user
selects the mode of operation, the error control, the root-finding technique and various optional inputs
by a prior call of the setup routine D02QWF.

For a description of the practical implementation of an Adams formula see Shampine and Gordon [1].

4 References

[1] Shampine L F and Gordon M K (1975) Computer Solution of Ordinary Differential Equations –
The Initial Value Problem W H Freeman & Co., San Francisco

[2] Shampine L F and Watts H A (1979) DEPAC – design of a user oriented package of ODE solvers
Report SAND79–2374 Sandia National Laboratory

[3] Watts H A (1985) RDEAM – An Adams ODE code with root solving capability Report SAND85–
1595 Sandia National Laboratory

[NP3390/19/pdf] D02QGF.1



D02QGF D02 – Ordinary Differential Equations

5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the parameter IREVCM. Between intermediate exits and
re-entries, all parameters other than GRVCM and RWORK must remain unchanged.

1: NEQF — INTEGER Input

On initial entry: the number of first-order ordinary differential equations to be solved by D02QGF.
It must contain the same value as the parameter NEQF used in the prior call to D02QWF.

Constraint: NEQF ≥ 1.

2: T — real Input/Output

On initial entry: that is after a call to D02QWF with STATEF = ’S’, T must be set to the initial
value of the independent variable x.

On final exit: the value of x at which y has been computed. This may be an intermediate output
point, a root, TOUT or a point at which an error has occurred. If the integration is to be continued,
possibly with a new value for TOUT, T must not be changed.

3: Y(NEQF) — real array Input/Output

On initial entry: the initial values of the solution y1, y2, . . . , yNEQF.

On final exit: the computed values of the solution at the exit value of T. If the integration is to be
continued, possibly with a new value for TOUT, these values must not be changed.

4: TOUT — real Input

On initial entry: the next value of x at which a computed solution is required. For the initial T,
the input value of TOUT is used to determine the direction of integration. Integration is permitted
in either direction. If TOUT = T on exit, TOUT must be reset beyond T in the direction of
integration,before any continuation call.

5: NEQG — INTEGER Input

On initial entry: the number of event functions which the user is defining for root-finding. If root-
finding is not required the value for NEQG must be ≤ 0. Otherwise it must be the same value as
the parameter NEQG used in the prior call to D02QWF.

6: ROOT — LOGICAL Output

On final exit: if root-finding was required (NEQG > 0 on entry), then ROOT specifies whether or
not the output value of the parameter T is a root of one of the event functions. If ROOT = .FALSE.,
then no root was detected, whereas ROOT = .TRUE. indicates a root and the user should make a
call to D02QYF for further information.

If root-finding was not required (NEQG = 0 on entry), then ROOT = .FALSE..

7: IREVCM — INTEGER Input/Output

On initial entry: IREVCM must have the value 0.

On intermediate exit: IREVCM specifies what action the user must take before re-entering D02QGF
with IREVCM unchanged. The possible values of IREVCM on exit from D02QGF are 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12 which should be interpreted as follows:

IREVCM = 1, 2, 3, 4, 5, 6 or 7

indicates that the user must supply y′ = f(x, y), where x is given by TRVCM and yi is returned
in Y(i), for i = 1, 2, . . . , NEQF when YRVCM = 0 and RWORK(YRVCM + i − 1), for i =
1, 2, . . . , NEQF when YRVCM �= 0. y′

i should be placed in location RWORK(YPRVCM+i−1),
for i = 1, 2, . . . , NEQF.

D02QGF.2 [NP3390/19/pdf]



D02 – Ordinary Differential Equations D02QGF

IREVCM = 8

indicates that the current step was not successful due to error test failure. The only information
supplied to the user on this return is the current value of the independent variable T, as given
by TRVCM. No values must be changed before re-entering D02QGF. This facility enables the
user to determine the number of unsuccessful steps.

IREVCM = 9, 10, 11, or 12

indicates that the user must supply gk(x, y, y′), where k is given by KGRVCM, x is given by
TRVCM, yi is given by Y(i) and y′

i is given by RWORK(YPRVCM − 1 + i). The result gk

should be placed in the variable GRVCM.

On final exit: IREVCM has the value 0, which indicates that an output point or root has been
reached or an error has occurred (see IFAIL).

8: TRVCM — real Output

On intermediate exit: the current value of the independent variable.

9: YRVCM — INTEGER Output

On intermediate exit: with IREVCM = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 or 12, YRVCM specifies the
locations of the dependent variables y for use in evaluating the differential system or the event
functions. If YRVCM = 0 then yi is given by Y(i), for i = 1, 2, . . . , NEQF. If YRVCM �= 0 then yi

is given by RWORK(YRVCM + i − 1), for i = 1, 2, . . . , NEQF.

10: YPRVCM — INTEGER Output

On intermediate exit: with IREVCM = 1, 2, 3, 4, 5, 6, or 7, YPRVCM specifies the positions
in RWORK at which the user should place the derivatives y′. y′

i should be placed in location
RWORK(YPRVCM + i − 1), for i = 1, 2, . . . , NEQF.

With IREVCM = 9, 10, 11 or 12, YPRVCM specifies the locations of the derivatives y′ for use in
evaluating the event functions. y′

i is given by RWORK(YPRVCM + i − 1), for i = 1, 2, . . . , NEQF.
YPRVCM must not be changed before re-entering D02QGF.

11: GRVCM — real Input

On intermediate re-entry: with IREVCM = 9, 10, 11 or 12, GRVCM must contain the value of
gk(x, y, y′), where k is given by KGRVCM.

12: KGRVCM — INTEGER Output

On intermediate exit: with IREVCM = 9, 10, 11 or 12, KGRVCM specifies which event function
gk(x, y, y′) the user must evaluate.

13: RWORK(LRWORK) — real array Workspace

This must be the same parameter RWORK as supplied to D02QWF. It is used to pass information
from D02QWF to D02QGF, and from D02QGF to the D02QXF, D02QYF and D02QZF. Therefore
the contents of this array must not be changed before the call to D02QGF or calling any of the
routines D02QXF, D02QYF and D02QZF.

14: LRWORK — INTEGER Input

On initial entry: the dimension of the array RWORK as declared in the (sub)program from which
D02QGF is called.

This must be the same parameter LRWORK as supplied to D02QWF.

15: IWORK(LIWORK) — INTEGER array Workspace

This must be the same parameter IWORK as supplied to D02QWF. It is used to pass information
from D02QWF to D02QGF, and from D02QGF to D02QXF, D02QYF and D02QZF. Therefore the
contents of this array must not be changed before the call to D02QGF or calling any of the routines
D02QXF, D02QYF and D02QZF.

[NP3390/19/pdf] D02QGF.3



D02QGF D02 – Ordinary Differential Equations

16: LIWORK — INTEGER Input

On initial entry: the dimension of the array IWORK as declared in the (sub)program from which
D02QGF is called.

This must be the same parameter LIWORK as supplied to D02QWF.

17: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL = 1

On entry, the integrator detected an illegal input, or D02QWF has not been called prior to the
call to the integrator. If on entry IFAIL = 0 or −1, the form of the error will be detailed
on the current error message unit (as defined by X04AAF).

This error may be caused by overwriting elements of RWORK and IWORK.

IFAIL = 2

The maximum number of steps has been attempted (at a cost of about 2 derivative evaluations
per step). (See parameter MAXSTP in D02QWF.) If integration is to be continued then the user
need only reset IFAIL and call the routine again and a further MAXSTP steps will be attempted.

IFAIL = 3

The step size needed to satisfy the error requirements is too small for the machine precision
being used. (See parameter TOLFAC in D02QXF.)

IFAIL = 4

Some error weight wi became zero during the integration (see parameters VECTOL, RTOL and
ATOL in D02QWF.) Pure relative error control (ATOL = 0.0) was requested on a variable (the
ith) which has now become zero. (See parameter BADCMP in D02QXF.) The integration was
successful as far as T.

IFAIL = 5

The problem appears to be stiff (see the Chapter Introduction for a discussion of the term ‘stiff’).
Although it is inefficient to use this integrator to solve stiff problems, integration may be continued
by resetting IFAIL and calling the routine again.

IFAIL = 6

A change in sign of an event function has been detected but the root-finding process appears to
have converged to a singular point T rather than a root. Integration may be continued by resetting
IFAIL and calling the routine again.

IFAIL = 7

The code has detected two successive error exits at the current value of T and cannot proceed.
Check all input variables.

D02QGF.4 [NP3390/19/pdf]



D02 – Ordinary Differential Equations D02QGF

7 Accuracy

The accuracy of integration is determined by the parameters VECTOL, RTOL and ATOL in a prior call
to D02QWF. Note that only the local error at each step is controlled by these parameters. The error
estimates obtained are not strict bounds but are usually reliable over one step. Over a number of steps
the overall error may accumulate in various ways, depending on the property of the differential equation
system. The code is designed so that a reduction in the tolerances should lead to an approximately
proportional reduction in the error. The user is strongly recommended to call D02QGF with more than
one set of tolerances and to compare the results obtained to estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around zero a
relative error test should be avoided, whereas if the solution is exponentially increasing an absolute error
test should not be used. If different accuracies are required for different components of the solution then
a component-wise error test should be used. For a description of the error test see the specifications of
the parameters VECTOL, ATOL and RTOL in the routine document for D02QWF.

The accuracy of any roots located will depend on the accuracy of integration and may also be restricted
by the numerical properties of g(x, y, y′). When evaluating g the user should try to write the code so
that unnecessary cancellation errors will be avoided.

8 Further Comments

If the routine fails with IFAIL = 3 then the combination of ATOL and RTOL may be so small that a
solution cannot be obtained, in which case the routine should be called again with larger values for RTOL
and/or ATOL. If the accuracy requested is really needed then the user should consider whether there is
a more fundamental difficulty. For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude. The
routine could be used in one-step mode to monitor the size of the solution with the aim of trapping
the solution before the singularity. In any case numerical integration cannot be continued through
a singularity, and analytical treatment may be necessary;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine will
require a very small step size to preserve stability. This will usually be exhibited by excessive
computing time and sometimes an error exit with IFAIL = 3, but usually an error exit with
IFAIL = 2 or 5. The Adams methods are not efficient in such cases and the user should consider
using a routine from the subchapter D02M–D02N. A high proportion of failed steps (see parameter
NFAIL in D02QXF) may indicate stiffness but there may be other reasons for this phenomenon.

D02QGF can be used for producing results at short intervals (for example, for graph plotting); the user
should set CRIT = .TRUE. and TCRIT to the last output point required in a prior call to D02QWF and
then set TOUT appropriately for each output point in turn in the call to D02QGF.

9 Example

We solve the following system (for a projectile)

y′ = tan φ

v′ =
−0.032 tanφ

v
− 0.02v

cos φ

φ′ =
−0.032

v2

over an interval [0.0, 10.0] starting with values y = 0.5, v = 0.5 and φ = π/5 using scalar error control
(VECTOL = .FALSE.) until the first point where y = 0.0 is encountered.

Also, we use D02QGF to produce output at intervals of 2.0.

[NP3390/19/pdf] D02QGF.5



D02QGF D02 – Ordinary Differential Equations

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D02QGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQF, NEQG, LATOL, LRTOL, LRWORK, LIWORK
PARAMETER (NEQF=3,NEQG=1,LATOL=1,LRTOL=1,

+ LRWORK=23+23*NEQF+14*NEQG,LIWORK=21+4*NEQG)
real TSTART, HMAX
PARAMETER (TSTART=0.0e0,HMAX=2.0e0)

* .. Local Scalars ..
real GRVCM, PI, T, TCRIT, TINC, TOUT, TRVCM
INTEGER I, IFAIL, IREVCM, J, KGRVCM, MAXSTP, YPRVCM,

+ YRVCM
LOGICAL ALTERG, CRIT, ONESTP, ROOT, SOPHST, VECTOL
CHARACTER*1 STATEF

* .. Local Arrays ..
real ATOL(LATOL), RTOL(LRTOL), RWORK(LRWORK), Y(NEQF)
INTEGER IWORK(LIWORK)

* .. External Functions ..
real X01AAF
EXTERNAL X01AAF

* .. External Subroutines ..
EXTERNAL D02QGF, D02QWF

* .. Intrinsic Functions ..
INTRINSIC COS, real, TAN

* .. Executable Statements ..
WRITE (NOUT,*) ’D02QGF Example Program Results’
TCRIT = 10.0e0
STATEF = ’S’
VECTOL = .FALSE.
RTOL(1) = 1.0e-4
ATOL(1) = 1.0e-7
ONESTP = .FALSE.
SOPHST = .TRUE.
CRIT = .TRUE.
TINC = 2.0e0
MAXSTP = 500
PI = X01AAF(0.0e0)
T = TSTART
Y(1) = 0.5e0
Y(2) = 0.5e0
Y(3) = 0.2e0*PI
WRITE (NOUT,*)
WRITE (NOUT,*) ’ T Y(1) Y(2) Y(3)’
WRITE (NOUT,99999) T, (Y(I),I=1,NEQF)
IFAIL = 0

*
CALL D02QWF(STATEF,NEQF,VECTOL,ATOL,LATOL,RTOL,LRTOL,ONESTP,CRIT,

+ TCRIT,HMAX,MAXSTP,NEQG,ALTERG,SOPHST,RWORK,LRWORK,
+ IWORK,LIWORK,IFAIL)

*
J = 1
TOUT = real(J)*TINC

D02QGF.6 [NP3390/19/pdf]



D02 – Ordinary Differential Equations D02QGF

IREVCM = 0
*

20 IFAIL = -1
*

CALL D02QGF(NEQF,T,Y,TOUT,NEQG,ROOT,IREVCM,TRVCM,YRVCM,YPRVCM,
+ GRVCM,KGRVCM,RWORK,LRWORK,IWORK,LIWORK,IFAIL)

*
IF (IREVCM.GT.0) THEN

IF (IREVCM.LT.8) THEN
IF (YRVCM.EQ.0) THEN

RWORK(YPRVCM) = TAN(Y(3))
RWORK(YPRVCM+1) = -0.032e0*TAN(Y(3))/Y(2) - 0.02e0*Y(2)

+ /COS(Y(3))
RWORK(YPRVCM+2) = -0.032e0/Y(2)**2

ELSE
RWORK(YPRVCM) = TAN(RWORK(YRVCM+2))
RWORK(YPRVCM+1) = -0.032e0*TAN(RWORK(YRVCM+2))

+ /RWORK(YRVCM+1) - 0.02e0*RWORK(YRVCM+1)
+ /COS(RWORK(YRVCM+2))

RWORK(YPRVCM+2) = -0.032e0/RWORK(YRVCM+1)**2
END IF

ELSE IF (IREVCM.GT.8) THEN
GRVCM = Y(1)

END IF
GO TO 20

ELSE IF (IFAIL.EQ.0) THEN
WRITE (NOUT,99999) T, (Y(I),I=1,NEQF)
IF (T.EQ.TOUT .AND. J.LT.5) THEN

J = J + 1
TOUT = real(J)*TINC
GO TO 20

END IF
END IF
STOP

*
99999 FORMAT (1X,F6.4,3X,3(F7.4,2X))

END

9.2 Program Data

None.

9.3 Program Results

D02QGF Example Program Results

T Y(1) Y(2) Y(3)
0.0000 0.5000 0.5000 0.6283
2.0000 1.5493 0.4055 0.3066
4.0000 1.7423 0.3743 -0.1289
6.0000 1.0055 0.4173 -0.5507
7.2883 0.0000 0.4749 -0.7601

[NP3390/19/pdf] D02QGF.7 (last)


